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Abstract

Undamped oscillators are often employed as vibration absorbers to minimize excess vibration in structural systems. In

this paper, undamped sprung masses and rotational oscillators are used to impose points of zero displacements and zero

slopes for an arbitrarily supported linear structure during forced harmonic excitations. For convenience, such points are

referred to as fixed nodes. When the sprung mass and rotational oscillator attachment locations and the fixed node

locations coincide (or collocated), it is always possible to select the sprung mass and rotational oscillator parameters such

that multiple fixed nodes are induced at any desired locations along the structure for any excitation frequency. When the

attachment and the fixed node locations are not collocated (or non-collocated), however, it is only possible to induce nodes

at certain locations along the elastic structure for a given driving frequency. Moreover, when the desired fixed node

locations are closely spaced, it is possible to specify a region of nearly zero amplitudes for a particular driving frequency,

thus drastically reducing the vibrational level in that segment of the structure. An iterative scheme is proposed that quickly

leads to a set of theoretically feasible oscillator parameters that can be used to induce fixed nodes anywhere along the linear

structure. Numerical case studies are performed and they validated the proposed scheme of imposing points of zero

displacements and zero slopes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Attaching properly tuned vibration absorbers to a given structure for the purpose of eliminating excess
vibration has been studied by many different authors over the years, and hence only a few selected references
are given here. Jacquot [1] proposed a method to give the optimal dynamic vibration absorber parameters in
order to eliminate the undesirable vibration in Euler–Bernoulli beams under sinusoidal excitation. However,
the applicability of his method was limited in that only a single mode for the beam was employed when
applying the assumed-modes method. Özgüven and C- andir [2] developed a general approach to give the
optimal dynamic vibration absorber parameters to suppress any two resonances. They used the assumed-
modes approach to calculate the response of the system to a concentrated harmonic excitation, and performed
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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an optimization to minimize the maximum response in any desired mode. Manikanahally and Crocker [3]
employed vibration absorbers to suppress any number of significant modes. For a chosen mass, optimization
of the stiffness and damping parameters of each absorber was performed to minimize the dynamic response
corresponding to the resonance frequency at which the absorbers are tuned to operate. The method was
successfully applied to a space structure modeled as a mass-loaded free–free beam that is under a single
localized harmonic excitation. Keltie and Cheng [4] investigated the effects of point masses on the structural
response of a finite beam, and proposed a technique to determine the mass locations for the purpose of
reducing the vibration level at any arbitrary location on a structure. In their optimization algorithm, they used
only the mass locations as the design variables. Alsaif and Foda [5] employed the dynamic Green function to
determine the optimum values of masses and/or springs and their locations along a beam for the purpose of
confining the vibration to an arbitrary location. The masses are rigidly attached to the beam, and the springs
are grounded at one end. While the algorithm they used is exact, direct and elegant, the approach can only be
applied when the Green function for the system is readily available. Zuo and Nayfeh [6] proposed a technique
based on the descent-subgradient method to maximize the minimum damping of modes in a prescribed
frequency range for multiple-degrees-of-freedom tuned-mass systems. The experimental results in which a
two-degrees-of-freedom tuned-mass system is optimized to damp the first two modes of a free–free beam were
presented to validate the proposed method. Yaman and Sen [7] investigated the effectiveness of a pendulum-
type passive vibration absorber attached to a flexible beam that has a single-degree-of-freedom and is
subjected to a sinusoidal base excitation. They determined the optimal orientation of the absorber, and the
factors that affected its performance. Ozer and Royston [8] developed a method based on the
Sherman–Morrison matrix inversion formula for determining the optimal parameters for a vibration
absorber that is attached to a damped multiple-degrees-of-freedom system. Their method can be used to
minimize the motion of selected physical masses or modes of vibration, and to minimize a linear summation of
the degrees-of-freedom.

Cha and Pierre [9] developed an approach to passively impose a single node for the normal modes of any
arbitrarily supported linear structure by means of attaching a chain of oscillators. Cha [10] generalized the
approach to impose multiple nodes for any normal mode of an elastic structure using a set of parallel sprung
masses. The focus of Refs. [9,10] was on imposing nodes for the normal modes of a linear structure. Cha [11]
used a set of elastically mounted masses to induce a single or multiple nodes anywhere along an elastic
structure that is subjected to a harmonically excited localized force, where the nodes are defined as points of
zero displacements. Cha [12] extended his previous work by specifying the maximum allowable absorber
amplitudes as additional design objectives. An efficient procedure was proposed for choosing the required
oscillator parameters, and numerical studies were performed to validate the proposed methodology of
imposing nodes at multiple locations along a linear structure during harmonic excitations. In this paper, a set
of sprung masses and rotational oscillators are used to enforce one or more fixed nodes, i.e., points of zero
displacements and zero slopes, along an arbitrarily supported structure during harmonic excitations.
Enforcing fixed nodes is clearly more complicated, because in addition to the zero displacement constraints,
the zero slope constraints must also be satisfied. Not surprisingly, enforcing fixed nodes reduces the
vibrational level even more compared to imposing nodes only. This is beneficial because it would allow
sensitive instruments to be placed near or at fixed nodes where there are little or no vibration. In addition, the
proposed scheme allows certain points along the structure to remain stationary without using any rigid
supports. Numerical cases studies are presented to verify the utility of the proposed scheme of imposing fixed
nodes, and bounds are given for the stiffness parameters of the sprung masses and the rotational oscillators.

2. Theory

2.1. Governing equations

Consider an arbitrarily supported linear structure to which S sprung masses and S rotational oscillators are
attached as shown in Fig. 1. A localized harmonic force

f ðtÞ ¼ Fe jot (1)
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Fig. 1. An arbitrarily supported elastic structure that is subject to a localized harmonic excitation and carrying any number of sprung

masses and rotational oscillators.
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is applied to the structure at xf , where F represents the forcing amplitude, o denotes the driving or excitation
frequency, and j ¼

ffiffiffiffiffiffiffi
�1
p

. The assumed modes method [13] will be used to formulate the equations of motion.
It is a procedure for discretizing an arbitrary structure prior to obtaining the governing equations. This
method is utilized instead of other discretization schemes such as the finite element method because it enables
one to solve the inverse problem of specifying the sprung mass and rotational oscillator parameters in order to
induce fixed nodes anywhere along a linear structure during harmonic excitations.

Using the assumed-modes method, the physical deflection of the structure at any point x is given by

wðx; tÞ ¼
XN

i¼1

fiðxÞZiðtÞ, (2)

where the fiðxÞ are the eigenfunctions of the linear structure (the elastic structure without any sprung masses)
that form the basis functions for this approximate solution, the ZiðtÞ are the corresponding generalized
coordinates, and N is the number of modes used in the assumed-modes expansion. The total kinetic and
potential energies of the combined system, defined as the linear structure carrying the elastically mounted
masses and the rotational oscillators, are given by

T ¼
1

2

XN

i¼1

Mi _Z2i ðtÞ þ
1

2

XS

i¼1

½mi _z
2
i ðtÞ þ I i

_y
2

i ðtÞ� (3)

and

V ¼
1

2

XN

i¼1

KiZ2i ðtÞ þ
1

2

XS

i¼1

½kiðziðtÞ � wðxi
a; tÞÞ

2
þ kriðyiðtÞ � w0ðxi

a; tÞÞ
2
�, (4)

where Mi and Ki are the respectively, generalized masses and stiffnesses of the linear structure; mi and ki are
the mass and spring stiffness of the ith oscillator, ziðtÞ is its displacement; I i and kri are the inertia and
rotational spring stiffness for the ith rotational oscillator, yiðtÞ is its angular displacement; S is the total
number of sprung masses/rotational oscillators attached to the linear structure; an overdot denotes a
derivative with respect to time t, a prime represents a partial derivative with respect to the spatial coordinate x;
xi

a represents the attachment location of the ith translational and rotational oscillators, and wðxi
a; tÞ and
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w0ðxi
a; tÞ represent the lateral displacement and the slope of the beam at xi

a, respectively. Finally, the
generalized force associated with the generalized coordinate ZiðtÞ is

FiðtÞ ¼ f ðtÞfiðxf Þ. (5)

Applying Lagrange’s equations and assuming simple harmonic motion with the same response frequency as
the driving frequency,

ZiðtÞ ¼ Z̄ie
jot; ziðtÞ ¼ z̄ie

jot; yiðtÞ ¼ ȳie
jot, (6)

the generalized coordinates ḡ, the amplitudes z̄ for the sprung masses and the angular displacements h̄ for the
rotational oscillators for the system of Fig. 1 correspond to the solution of the following matrix equation:

½K� � o2½M� ½R1� ½R2�

½R1�
T ½k� � o2½m� ½0�

½R2�
T ½0� ½kr� � o2½I 0�

2
64

3
75

ḡ

z̄

h̄

2
64
3
75 ¼

F/ðxf Þ

0

0

2
64

3
75, (7)

where ḡ ¼ ½Z̄1 Z̄2 . . . Z̄N �
T, z̄ ¼ ½z̄1 z̄2 . . . z̄S�

T, h̄ ¼ ½ȳ1 ȳ2 . . . ȳS�
T, and the S � S matrices ½m�, ½k�, ½I 0� and ½kr�

are all diagonal, whose ith elements are given by mi, ki, I i and kri, respectively. The N �N ½M� and ½K�
matrices of Eq. (7) are

½M� ¼ ½Md � and ½K� ¼ ½Kd � þ
XS

i¼1

½ki/ðx
i
aÞ/

T
ðxi

aÞ þ kri/
0
ðxi

aÞ/
0T
ðxi

aÞ�, (8)

where ½Md � and ½Kd � are diagonal matrices whose ith elements are Mi and Ki; vectors /ðxi
aÞ and /ðxf Þ consist

of the eigenfunctions of the linear structure evaluated at xi
a and xf , respectively,

/ðxi
aÞ ¼ ½f1ðx

i
aÞ f2ðx

i
aÞ . . . fN ðx

i
aÞ�

T; /ðxf Þ ¼ ½f1ðxf Þ f2ðxf Þ . . . fN ðxf Þ�
T, (9)

/0ðxi
aÞ denotes the vector of the derivative of the eigenfunctions evaluated at xi

a; and the N � S matrices ½R1�

and ½R2� are given by

½R1� ¼ ½�k1/ðx
1
aÞ . . . � ki/ðx

i
aÞ . . . � kS/ðxS

a Þ�, (10)

½R2� ¼ ½�kr1/
0
ðx1

aÞ . . . � kri/
0
ðxi

aÞ . . . � krS/0ðxS
a Þ�. (11)

To induce fixed nodes at any desired locations, xr
n, along the linear structure requires that the displacements

and slopes of the linear structure at xr
n be zero simultaneously, i.e.,

wðxr
n; tÞ ¼

XN

i¼1

fiðx
r
nÞZiðtÞ ¼ /T

ðxr
nÞg ¼ /T

ðxr
nÞḡe

jot ¼ 0; r ¼ 1; . . . ;S, (12)

w0ðxr
n; tÞ ¼

XN

i¼1

f0iðx
r
nÞZiðtÞ ¼ /0

T
ðxr

nÞg ¼ /0
T
ðxr

nÞḡe
jot ¼ 0; r ¼ 1; . . . ;S. (13)

Once the linear structure and its boundary conditions are specified, the attachment locations xi
a are given, and

the excitation frequency o and the excitation location xf are known, Eqs. (7), (12) and (13) can be used
together to solve for the required sprung mass parameters, mi and ki, and the required rotational oscillator
parameters, I i and kri, in order to impose fixed nodes at xr

n.

2.2. Oscillators and node locations are collocated

When the attachment and the fixed node locations coincide, or otherwise known as collocated, determining
the required sprung mass and rotational oscillator parameters to induce fixed nodes is trivial. From Eq. (7),
note that if

ki ¼ mio2 and kri ¼ I io2; i ¼ 1; . . . ;S, (14)
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then

½R1�
Tḡ ¼ 0 and ½R2�

Tḡ ¼ 0. (15)

Because the attachment and the fixed node locations are collocated, xi
a ¼ xi

n, in which case the ith row of both
expressions in Eq. (15) yield

�ki/
T
ðxi

aÞḡ ¼ �ki/
T
ðxi

nÞḡ ¼ 0; i ¼ 1; . . . ;S, (16)

�kri/
0T
ðxi

aÞḡ ¼ �kri/
0T
ðxi

nÞḡ ¼ 0; i ¼ 1; . . . ;S, (17)

which clearly satisfy Eqs. (12) and (13). For a given excitation frequency, as long as the sprung mass and
rotational oscillator parameters satisfy Eq. (14), fixed nodes will be induced at the attachment locations.
Finally, the selection of the sprung mass and rotational oscillator parameters is certainly not unique. The
eventual choice is governed by the tolerable vibration amplitudes of the sprung masses and the tolerable
angular displacements of the rotational oscillators.

2.3. Oscillators and node locations are not collocated

Consider an elastic structure subjected to a localized harmonic input. For a certain application, a fixed node
or multiple fixed nodes are desired along the linear structure for a given excitation frequency. However, due to
various physical constraints, the sprung masses and the rotational oscillators cannot be attached at the desired
node locations, but instead at some other points along the linear structure. For this case, the attachment and
the fixed node locations are said to be non-collocated. When the attachment and the fixed node locations are
non-collocated, Eq. (7), of size ðN þ 2SÞ � ðN þ 2SÞ, can be reduced by simple algebraic manipulation. Using
Eq. (7), the z̄i and ȳi are found to be

z̄i ¼
ki/

T
ðxi

aÞ

ki � o2mi

ḡ; i ¼ 1; . . . ;S, (18)

ȳi ¼
kri/

0T
ðxi

aÞ

kri � o2I i

ḡ; i ¼ 1; . . . ;S. (19)

Substituting Eqs. (18) and (19) into Eq. (7), the following matrix equation, of size N �N, is obtained:

½Kd � þ
XS

i¼1

½si/ðx
i
aÞ/

T
ðxi

aÞ þ ti/
0
ðxi

aÞ/
0T
ðxi

aÞ� � o2½Md �

( )
ḡ ¼ F/ðxf Þ, (20)

where

si ¼
kimio2

mio2 � ki

and ti ¼
kriI io2

I io2 � kri

. (21)

Incidentally, once the mi, ki, I i, kri and xi
a have been selected, the natural frequencies of the modified structure,

i.e., the structure carrying the translational and rotational oscillators, may be found from the zeros of the
characteristic determinant of the coefficient matrix of ḡ of Eq. (20). Assuming that the excitation frequency
does not coincide with any natural frequencies of the modified system, the coefficient matrix of Eq. (20) can be
inverted to give

ḡ ¼ ½Kd � þ
XS

i¼1

½si/ðx
i
aÞ/

T
ðxi

aÞ þ ti/
0
ðxi

aÞ/
0T
ðxi

aÞ� � o2½Md �

( )�1
F/ðxf Þ, (22)

which allows Eqs. (12) and (13), the constraint equations that dictate the fixed node locations, to be rewritten
as

/T
ðxr

nÞ ½K
d � þ

XS

i¼1

½si/ðx
i
aÞ/

T
ðxi

aÞ þ ti/
0
ðxi

aÞ/
0T
ðxi

aÞ� � o2½Md �

( )�1
F/ðxf Þ ¼ 0; r ¼ 1; . . . ;S, (23)
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/0
T
ðxr

nÞ ½K
d � þ

XS

i¼1

si/ðx
i
aÞ/

T
ðxi

aÞ þ ti/
0
ðxi

aÞ/
0T
ðxi

aÞ� � o2½Md �

( )�1
F/ðxf Þ ¼ 0; r ¼ 1; . . . ;S. (24)

Eqs. (23) and (24) can be used to solve for the required sprung mass and rotational oscillator parameters in
order to induce a single or multiple fixed nodes at xr

n.
Eqs. (23) and (24) yield a set of 2S equations. By assuming the excitation frequency o, the attachment

locations xi
a, and the excitation location xf , all are specified, these 2S equations lead to a set of non-linear

algebraic equations in terms of si and ti, which can be solved simultaneously so that the specified xr
n are fixed

nodes. Because the 2S equations are generally totally independent, the solution to these simultaneous non-
linear algebraic equations can be difficult if not impossible to obtain analytically. In this paper, the MATLAB
routine fsolve is employed to obtain the solution of a system of non-linear algebraic equations numerically
using a quasi-Newton method. To execute fsolve, a set of initial guesses must be provided for the unknowns.
For these initial guesses, if fsolve does not converge to a solution, then fsolve is executed again with a different
set of starting values until a solution is obtained.

Because the 2S equations are highly non-linear, determining the solution to these equations may be
computationally taxing using fsolve. To expedite convergence, an iterative method is proposed that quickly
leads to a set of desired solution. The proposed iterative scheme is based on varying the number of modes used
in the assumed modes method. First let the number of assumed modes N be small and use different sets of
initial guesses to determine the solution to these equations. Because N is relatively small, this step can be
completed very quickly. Once the optimal initial guesses are determined, use the solution given by fsolve under
the optimal initial guesses as the input for the next iteration, and let N be a larger number. The iteration
process is repeated until N becomes sufficiently large, and the output of fsolve converges to a set of
theoretically feasible solution.

Incidentally, Cha [11,12] imposed nodes or points of zero displacements using properly tuned sprung
masses, and found that using the assumed modes method with N ¼ 15 was sufficient to converge to a set of
solution. In this paper, fixed nodes are induced, where points of zero displacements and zero slopes are
enforced. Interestingly, with the additional constraints of zero slopes, the solution is found to converge very
slowly, and substantially more modes are required in the assumed modes method to ensure accurate results. In
particular, when the attachment and the fixed node locations are not collocated, the number of modes used in
the assumed modes method can be as large as 1000 to ensure sufficient accuracy.

The proposed technique of solving for the si and ti in order to impose fixed nodes at xr
n is very robust. In all

of the cases considered, the iteration process successfully converged to a set of theoretically feasible solutions.
Finally, if there is no set of si and ti that satisfies the 2S non-linear algebraic equations, then one can change
one or more of the attachment locations, xi

a, to obtain the required si and ti so that fixed nodes at xi
n can be

induced for the given xf and o.
Once the required si and ti have been obtained numerically, the corresponding sprung mass and rotational

oscillator parameters can be readily determined. Assume the stiffnesses, ki and kri, are specified, then from Eq.
(21), the required masses and inertias are

mi ¼
kisi

ðsi � kiÞo2
and I i ¼

kriti

ðti � kriÞo2
. (25)

While si and ti can be either positive or negative, to be physically meaningful, all of the physical parameters,
mi, ki, I i and kri, must be strictly positive. Thus, Eq. (25) gives the bounds on the stiffnesses, i.e.,

if si40¼)0okiosi if sio0¼)ki40, (26)

if ti40¼)0okrioti if tio0¼)kri40. (27)

These bounds serve as the design guide for selecting the stiffnesses of the sprung masses and the rotational
oscillators. Finally, the selection of the oscillator parameters is not unique. For a given set of si and ti, infinite
combinations of ðki;miÞ and ðkri; I iÞ are theoretically feasible. The actual choice is governed by the tolerable
amplitudes of the oscillator masses and inertias.
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3. Results

Because the assumed-modes method was used to formulate the equations of motion, the proposed
procedures can be easily implemented to impose a single or multiple fixed nodes for any arbitrarily supported
linear structure during harmonic excitations. Without any loss of generality, a simply supported uniform
Euler–Bernoulli beam will be considered, whose normalized (with respect to the mass per unit length, r, of the
beam) eigenfunctions are given by

fiðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ipx

L

� �
, (28)

such that the generalized masses and stiffnesses of the beam become Mi ¼ 1 and Ki ¼ ðipÞ
4EI=ðrL4Þ,

respectively, where E is the Young’s modulus, I is the moment of inertia of the cross-section of the beam.
Eqs. (23) and (24) will be used to find the si and ti in order to impose one or more fixed nodes at xr

n. To
validate the results of the assumed modes method and the si and ti of Eqs. (23) and (24), a finite element
model of the beam carrying sprung masses and rotational oscillators is constructed, where the stiffnesses of the
oscillators are specified based on available translational and rotational springs, and the masses and inertias of
the oscillators are given by the solutions of Eq. (25). The finite element model will also be subjected to the
same localized input. In all of the subsequent examples, the steady state deformed shape of the beam, the
natural frequencies of the structure carrying the properly tuned translational and rotational oscillators, and
the mass amplitudes and inertia angular displacements will be determined by using both the assumed modes
and the finite element methods. In using the latter approach, the beam is discretized into 100 finite elements of
equal length. Cha [11,12] used properly tuned spring–mass systems to effectively impose points of zero
displacements or nodes anywhere along a linear structure during harmonic excitations. To illustrate the
benefits of imposing zero slope constraints in addition to the zero displacement constraints, the beam
deformations will also be compared with those where only spring–mass systems are attached. In all of the
subsequent numerical examples, N ¼ 15 when one or more nodes (points of zero displacements) are induced,
for both the collocated and non-collocated cases; N ¼ 500 when one or more fixed nodes (points of zero
displacements and zero slopes) are imposed for the collocated cases and N ¼ 1000 for the non-collocated
cases. These values of N are chosen for consistency and to guarantee that the results (including the deformed
shape of the beam, its natural frequencies and oscillator amplitudes) match those obtained by using the finite
element method.
3.1. Collocated

For a given application, it is wished that a fixed node be imposed at xn ¼ 0:31L, for a concentrated

harmonic force of amplitude F , an excitation frequency of o ¼ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and an excitation location of

xf ¼ 0:77L. The steady state lateral displacement of the beam is shown in Fig. 2. The dashed line corresponds

to the deformed shape of the beam with no oscillator, and the horizontal line represents the configuration of
the undeformed beam. The dash–dotted line shows the deformed shape of the beam with a spring–mass system

attached at xa ¼ 0:31L, whose parameters are chosen such that k ¼ mo2. Note that a node is induced at the
desired location of 0:31L [11]. The solid line gives the deformed shape of the beam with both a sprung mass

and a rotational oscillator attached at xa ¼ 0:31L, where k ¼ mo2 and kr ¼ Iro2. Note that by attaching a
tuned rotational oscillator in addition to a tuned spring–mass system, the attachment location not only
remains stationary but also has zero slope. More importantly, the steady state response of the beam carrying
properly tuned translational and rotational oscillators is substantially suppressed compared to the beam
carrying a spring–mass attachment only, and the vibration of the beam between 0 and 0:35L is completely
quenched. Physically, the translational and rotational oscillators exert a force and moment equal in magnitude
and opposite in direction to the equivalent disturbance force and moment that act at xn, thus causing xn to
undergo zero displacement and zero slope. Finally, note that attaching a properly tuned spring–mass system to
enforce a node is analogous to adding a simply supported constraint at the node location (see the dash–dotted



ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10
x 10

x/L

w
(x

)/
(F

/(
E

I/L
3 ))

Fig. 2. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), with a sprung mass only (dash–dotted line), and without any oscillator (dashed line). The horizontal line represents

the configuration of the undeformed beam. The system parameters are o ¼ 21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L and xa ¼ 0:31L. The attachment

and node locations are collocated.

Table 1

The first six natural frequencies of a uniform simply supported Euler–Bernoulli beam carrying one sprung mass and one rotational

oscillator attached at xa ¼ 0:31L

Natural frequency Assumed modes (N ¼ 500) Finite element (N ¼ 100)

o1 0.97615E+01 0.97615E+01

o2 0.20559E+02 0.20555E+02

o3 0.21059E+02 0.21059E+02

o4 0.39684E+02 0.39684E+02

o5 0.89800E+02 0.89800E+02

o6 1.58450E+02 1.58450E+02

The system parameters are k ¼ 1:0EI=L3, m ¼ 2:26757� 10�3rL, kr ¼ 1:0EI=L and Ir ¼ 2:26757� 10�3rL3. The natural frequencies are

non-dimensionalized by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.

Table 2

Vibration amplitudes of the translational and rotational oscillators, obtained using the assumed modes and the finite element methods

Assumed modes Finite element

z 9.98141E�01 1.00008E+00

y 1.94571E�01 1.94208E�01

The system parameters are identical to those of Fig. 2. The stiffnesses are k ¼ 1:0EI=L3 and kr ¼ 1:0EI=L. The displacement z of the

oscillator mass is non-dimensionalized by dividing by L.

P.D. Cha, X. Zhou / Journal of Sound and Vibration 297 (2006) 55–7162
line). Similarly, attaching a properly tuned spring–mass system and a properly tuned rotational oscillator to
enforce a fixed node is analogous to adding a fixed support constraint at the node location (see the solid line).

To validate the previous results, a finite element model of the beam carrying a translational and rotational
oscillators at xa ¼ 0:31L, whose parameters satisfy k ¼ mo2 and kr ¼ Iro2, is developed. The steady state
deformed shape of the finite element beam model is identical to that shown in Fig. 2, and it will not be shown.
In Table 1 are given the natural frequencies of the combined system (the beam carrying the two oscillators),
obtained by using the assumed modes (with N ¼ 500) and the finite element method (where the beam is
discretized into 100 elements of equal length). Note the excellent agreement between the two approaches.
Table 2 shows the mass and inertia amplitudes when the beam is subjected to the given harmonic excitation,
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Fig. 3. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), and with a sprung mass only (dash–dotted line). The horizontal line represents the configuration of the undeformed

beam. The system parameters are o ¼ 39:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L and xa ¼ 0:65L. The attachment and node locations are collocated.
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where k ¼ 1:0EI=L3 and kr ¼ 1:0EI=L. Note again how well the assumed modes and the finite element results
track one another. Incidentally, in all of the subsequent examples, the assumed modes and the finite element
results agree very well. Thus, unless otherwise stated, the deformed shape, natural frequencies and mass/inertia
amplitudes obtained by using the finite element method will not be shown for the sake of brevity.

Consider now a simply supported beam subjected to a concentrated harmonic excitation with a frequency of

o ¼ 39:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, which nearly coincides with the second natural frequency of a simply supported beam

with no attachment, given by 4p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. The system parameters are xf ¼ 0:77L and xa ¼ 0:65L. For an

arbitrarily chosen set of k and kr, the mass and inertia are determined by m ¼ k=o2 and Ir ¼ kr=o2 so that the
attachment location becomes a fixed node. In Fig. 3 is shown the deformed shape of the beam, where the solid
line corresponds to the response shape of the beam carrying a translational and a rotational oscillator, and the
dash–dotted line corresponds to the deformed shape of the beam with one sprung mass. The deformed shape
for a simply supported beam with no attachment is not illustrated, because its amplitude is orders of
magnitude larger due to resonance. When the beam is carrying a properly tuned sprung mass only, a node is
induced at 0:65L; when the beam is carrying tuned translational and rotation oscillators, the vibration in the
region between 0 and 0:67L along the beam is substantially suppressed compared to the beam with a single
sprung mass attachment. Moreover, note that when a fixed node is induced, the deformation at any point
along the beam is less than that of the beam where a node is imposed.

Consider a different application where two fixed nodes are desired, at x1
n ¼ 0:2L and x2

n ¼ 0:7L, for o ¼

57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and xf ¼ 0:87L. In Fig. 4 is shown the steady state lateral displacement of the beam with and

without attachments. For the beam carrying sprung masses, the oscillator parameters satisfy ki ¼ mio2; for
the beam carrying translational and rotational oscillators, the oscillator parameters are tuned according to

ki ¼ mio2 and kri ¼ I io2. While the deformed shape of the beam with only sprung masses (see the
dash–dotted line) has nodes at 0:2L and 0:7L as expected, the response of the beam with both translational
and rotational oscillators (see the solid line) is completely suppressed in the region between 0 and 0:7L. Thus,
by attaching translational and rotational oscillators at the appropriate locations, one can quench the vibration
more effectively than attaching sprung masses only. Moreover, note that the vibrational amplitude at every
point is smaller for the beam with fixed nodes.

Table 3 lists the mass and inertia amplitudes of the translational and rotational oscillators of Fig. 4 for
different sets of ki and kri values. For simplicity, k1 ¼ k2 and kr1 ¼ kr2 since in application, using the same
springs would be the most convenient. Although these stiffnesses do not affect the steady state deformation of
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Table 3

The vibration amplitudes for the sprung masses and the rotational oscillators for different stiffnesses

k1; k2 kr1; kr2 m1;m2 I1; I2 z1 z2 y1 y2

2 2 6.1557E�04 6.1557E�04 4.2237E�04 3.5235E�01 5.5331E�05 3.0095E�02

10 15 3.0779E�03 4.6168E�03 8.4474E�05 7.0469E�02 7.3775E�06 4.0126E�03

25 20 7.6947E�03 6.1557E�03 3.3790E�05 2.8188E�02 5.5331E�06 3.0095E�03

40 30 1.2311E�02 9.2336E�03 2.1119E�05 1.7617E�02 3.6887E�06 2.0063E�03

80 50 2.4623E�02 1.5389E�02 1.0559E�05 8.8087E�03 2.2131E�06 1.2038E�03

The corresponding mass and inertia parameters are also shown. The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:87L, x1

a ¼ 0:2L and

x2
a ¼ 0:7L. The attachment and node locations are collocated. The stiffnesses ki and kri of the springs are non-dimensionalized by dividing

by EI=L3 and EI=L, respectively. The masses mi and inertias I i are non-dimensionalized by dividing by rL and rL3, respectively. The

displacements z1 and z2 of the oscillator masses are non-dimensionalized by dividing by L.
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Fig. 4. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with two sprung masses as well as two

rotational oscillators (solid line), with two sprung masses only (dash–dotted line), and without any oscillator (dashed line). The system

parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:87L, x1

a ¼ 0:2L and x2
a ¼ 0:7L. The attachment and node locations are collocated.
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the beam, they dictate the vibration amplitudes of the oscillators. By varying ki and kri and by setting
mi ¼ ki=o2 and I i ¼ kri=o2, different amplitudes can be obtained. Moreover, each ki or kri can be tuned
independently to determine the vibration amplitude of the corresponding oscillator without influencing the
vibration of the other oscillator. In Table 3, note that by increasing ki or kri, the vibration amplitude of the
corresponding oscillator decreases. This suggests that by choosing sufficiently large ki or kri, small vibration
amplitude for each oscillator can be obtained. However, increasing ki or kri increases the mass or inertia since
mi ¼ ki=o2 and I i ¼ kri=o2. Thus, the optimal value of ki or kri of each oscillator should be selected carefully
according to the practical application. In addition, for each translational oscillator, the product of its mass
and vibration amplitude remains constant regardless of what stiffness ki is chosen; the same results were
obtained when only nodes are imposed [12]. In particular, m1z1 ¼ 2:6000E� 07FrL4=ðEIÞ and m2z2 ¼

2:1690E� 04FrL4=ðEIÞ for the system parameters of Fig. 4. Numerically, the product of I iyi for each
rotational oscillator is also found to remain unchanged. Specifically, I1y1 ¼ 3:4060E� 08FrL5=ðEIÞ and
I2y2 ¼ 1:8526E� 05FrL5=ðEIÞ. The aforementioned results have important practical implications, since once
the product of mizi and I iyi are known explicitly, the oscillator parameters can be easily tuned to satisfy the
maximum tolerable amplitudes for the mass and inertia of the translational and rotational oscillators,
respectively.

As noted in Ref. [11], a region of zero displacement can be extended by adding more sprung masses to
induce more nodes. Interestingly, the same or better results can often be achieved with fewer fixed nodes. In
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Fig. 5. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with two sprung masses as well as two

rotational oscillators at 0:2L and 0:7L (solid line), with three sprung masses only at 0:2L, 0:45L and 0:7L (dash–dotted line), and without

any oscillator (dashed line). The system parameters are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and xf ¼ 0:87L. The attachment and node locations are

collocated.
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Fig. 6. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with two sprung masses as well as two

rotational oscillators (solid line), with two sprung masses only (dash–dotted line), and without any oscillator (dashed line). The system

parameters are o ¼ 39:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:87L, x1

a ¼ 0:2L and x2
a ¼ 0:7L. The attachment and node locations are collocated.
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Fig. 5 is shown the deformed shape of a simply supported beam under the same harmonic excitation as that of
Fig. 4, except now a third node is desired at 0:45L. Thus, an additional sprung mass is attached at the new
node location, and the vibration of the beam in the region between 0 and 0:7L is greatly quenched compared
to the beam of Fig. 4 when only two nodes are specified. However, the vibration of the beam between 0 and
0:7L when only two fixed nodes are imposed at 0:2L and 0:7L (the solid line) is still much lower than the
vibration of the beam where three nodes are enforced at 0:2L, 0:45L and 0:7L (the dash–dotted line).
Therefore, attaching translational and rotational oscillators to enforce the zero displacement and zero slope
constraints is often a more efficient way to quench vibration in a beam than by attaching sprung masses only
to enforce the zero displacement constraints. This is clearly beneficial because for structures where the
attachment locations are limited due to physical access, one can use fewer attachment points to suppress the
vibration of the beam.

Consider again the system of Fig. 4, except now the excitation frequency is at 39:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, which nearly

coincides with the second natural frequency of a simply supported beam with no attachment. In Fig. 6 is
shown the deformed shape of the beam, where the solid and dash–dotted correspond to the deformed shape of
the beam carrying translational/rotational oscillators and carrying sprung masses only, respectively. The
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deformed shape of the bare beam, i.e., the beam without any attachment, is not illustrated because the
excitation frequency is near resonance. When two tuned sprung masses are attached to the beam, nodes are
induced at 0:2L and 0:7L. When two sets of translational and rotational oscillators are attached to the beam,
not only are fixed nodes enforced at the desired locations, but the beam remains nearly stationary in the region
between 0 and 0:7L, even though the beam is being excited with a frequency that is near the bare beam’s
second natural frequency. This example clearly illustrates the effectiveness of using properly tuned
translational and rotational oscillators to induce fixed nodes and to suppress vibration.
3.2. Non-collocated

Consider now cases where the attachment and node locations are not collocated. In Fig. 7 is shown the
steady state lateral displacement of a simply supported beam with a concentrated harmonic force applied at

xf ¼ 0:77L, with a forcing frequency of o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and with the desired fixed node location at

xn ¼ 0:31L. However, the oscillators are placed at xa ¼ 0:65L because of space constraint. In this case, Eqs.
(23) and (24) can be used to obtain the s and t required to induce a fixed node. Solving Eqs. (23) and (24)

simultaneously yields s ¼ 1:35628� 106EI=L3 and t ¼ 5:49823� 103EI=L when N ¼ 1000 is used. For the
given s and t, the deformed shape of the beam is unique. Therefore, there exists an infinite number of ðk;mÞ
and ðkr; IrÞ combinations that can be used to induce fixed nodes theoretically, and the oscillator parameters
should be chosen according to the maximum tolerable oscillator amplitudes [12]. By using the approach

outlined in Ref. [11] to induce a node with zero displacement only, one finds s ¼ 1:89511� 103EI=L3 for
N ¼ 15. In Fig. 7, the deformed shapes for a bare beam, for a beam with a properly tuned spring–mass system,
and for a beam carrying a tuned sprung mass/rotational oscillator are given by the dashed, dash–dotted, and
solid lines, respectively. Note that the beam carrying a properly tuned sprung mass has a node at the desired
location of 0:31L, and that the vibration is substantially suppressed from 0 to 0:31L compared to the response
of the bare beam. Attaching a tuned translational and a rotational oscillator to the beam, on the other hand,
reduces the vibration even more. Note that not only is fixed node induced at 0:31L, but the beam remains
nearly motionless in the region between 0 and 0:65L. Moreover, its response is drastically quenched compared
to the deformed shape of the beam carrying only an elastically mounted mass.

In Fig. 8 is shown the deformed shape of the beam under harmonic excitation, with the same o and xf as
those of Fig. 7, except now the oscillators are moved from xa ¼ 0:65L to 0:72L. The desired fixed node is still
located at xn ¼ 0:31L. Eqs. (23) and (24) give s ¼ 2:83999� 106EI=L3 and t ¼ 6:71438� 103EI=L. To
impose a node with only a spring–mass system [11], one finds s ¼ 3:92203� 103EI=L3. In Fig. 8, note that by
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Fig. 7. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), with a sprung mass only (dash–dotted line), and without any oscillator (dashed line). The system parameters for the

solid line are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, xa ¼ 0:65L, xn ¼ 0:31L, s ¼ 1:35628� 106EI=L3 and t ¼ 5:49823� 103EI=L. For the

dash–dotted line, s ¼ 1:89511� 103EI=L3. The attachment and node locations are not collocated.
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Fig. 8. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), with a sprung mass only (dash–dotted line), and without any oscillator (dashed line). The system parameters for the

solid line are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, xa ¼ 0:72L, xn ¼ 0:31L, s ¼ 2:83999� 106EI=L3 and t ¼ 6:71438� 103EI=L. For the

dash–dotted line, s ¼ 3:92203� 103EI=L3. The attachment and node locations are not collocated.
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Fig. 9. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), with a sprung mass only (dash–dotted line), and without any oscillator (dashed line). The system parameters for the

solid line are o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:5L, xa ¼ 0:37L, xn ¼ 0:2L, s ¼ 1:34184� 106EI=L3 and t ¼ 7:40964� 103EI=L. For the

dash–dotted line, s ¼ 5:55693� 103EI=L3. The attachment and node locations are not collocated.
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simply changing the attachment location, the vibrational levels for both the beam with nodes and the beam
with fixed nodes are substantially reduced compared to the results of Fig. 7. Additionally, note that the beam
carrying the translational and rotational oscillators becomes nearly stationary after the attachment location
has been changed. The dramatic reduction in the vibration of the beam implies that by properly selecting the
attachment location, one can suppress the vibration even more effectively. Thus, the attachment locations can
also be used as design parameters. By attaching tuned oscillators at optimal locations, one can extend the
region along the beam where the vibration is minimized.

In engineering applications, the excitation force is often applied at the midspan of the beam. Fig. 9 is an

illustration of the deformation of the beam for this particular case, where xf ¼ 0:5L, o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xa ¼

0:37L and xn ¼ 0:2L. Solving Eqs. (23) and (24) one obtains s ¼ 1:34184� 106EI=L3 and t ¼ 7:40964�

103EI=L. To impose a node with only a spring–mass system [11], one finds s ¼ 5:55693� 103EI=L3. Note that
by attaching properly tuned translational and rotational oscillators, the point at 0:2L becomes a fixed node,
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Fig. 10. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with two sprung masses as well as two

rotational oscillators (solid line), with two sprung masses only (dash–dotted line), and without any oscillator (dashed line). The system

parameters for solid line are o ¼ 27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, x1

a ¼ 0:52L, x2
a ¼ 0:71L, x1

n ¼ 0:3L, x2
n ¼ 0:6L, s1 ¼ 2:80106� 106EI=L3,

s2 ¼ �4:57068� 106EI=L3, t1 ¼ 4:93548� 105EI=L and t2 ¼ �7:75327� 106EI=L. For the dash–dotted line, s1 ¼ 1:79258� 104EI=L3

and s2 ¼ 9:19000� 103EI=L3. The attachment and node locations are not collocated.

Table 4

The vibration amplitudes of the sprung masses for different stiffnesses

k1; k2 kr1; kr2 m1 m2 z1 z2

1 5 1.3717E�03 1.3717E�03 3.6466E�04 9.4626E�01

15 10 2.0576E�02 2.0576E�02 2.4311E�05 6.3084E�02

20 30 2.7435E�02 2.7435E�02 1.8233E�05 4.7313E�02

50 45 6.8588E�02 6.8586E�02 7.2931E�06 1.8925E�02

100 80 1.3718E�01 1.3717E�01 3.6465E�06 9.4628E�03

The corresponding masses are also shown. The system parameters are o ¼ 27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, x1

a ¼ 0:52L, x2
a ¼ 0:71L, x1

n ¼ 0:3L,

x2
n ¼ 0:6L, s1 ¼ 2:80106� 106EI=L3, s2 ¼ �4:57068� 106EI=L3, t1 ¼ 4:93548� 105EI=L and t2 ¼ �7:75327� 106EI=L. The attach-

ment and node locations are not collocated. The stiffnesses ki and kri of the springs are non-dimensionalized by dividing by EI=L3 and

EI=L, respectively. The masses mi are non-dimensionalized by dividing by rL. The displacements z1 and z2 of the oscillator masses are

non-dimensionalized by dividing by L.
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and the vibration in the region between 0 and 0:4L is substantially quenched. Moreover, note that when a
node or fixed node is imposed, the left end of the beam resembles a fixed boundary condition, even though the
physical boundary condition is simply supported.

Now consider the case of enforcing two fixed nodes. A harmonic excitation with o ¼ 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
is

applied at xf ¼ 0:77L. Two sets of oscillators (each set consists of a sprung mass and a rotational oscillator)
are attached at x1

a ¼ 0:52L and x2
a ¼ 0:71L for the purpose of inducing fixed nodes at x1

n ¼ 0:3L and
x2

n ¼ 0:6L. Solving Eqs. (23) and (24) gives s1 ¼ 2:80106� 106EI=L3, s2 ¼ �4:57068� 106EI=L3, t1 ¼
4:93548� 105EI=L and t2 ¼ �7:75327� 106EI=L. To impose nodes whereby only sprung masses are
attached [11], one finds s1 ¼ 1:79258� 104EI=L3 and s2 ¼ 9:19000� 103EI=L3. In Fig. 10 is shown the
deformed shape of the beam. Note that the beam with two nodes (see the dash–dotted line) remains motionless
in the region between 0 and 0:6L, while the beam with two fixed nodes (see the solid line) remains nearly
stationary in the range between 0 and 0:72L. Thus, the region of zero displacement is wider for the beam
carrying translational and rotational oscillators compared to the beam carrying sprung masses only.
Moreover, note that the vibration at any point along the beam with fixed nodes is lower than the vibration of
the beam with nodes only. Nevertheless, depending on applications, attaching properly tuned spring–mass
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Table 5

The vibration amplitudes of the rotational oscillators for different stiffnesses

k1; k2 kr1; kr2 I1 I2 y1 y2

1 5 6.8588E�03 6.8587E�03 2.3135E�06 8.6410E�03

15 10 1.3718E�02 1.3717E�02 1.1568E�06 4.3205E�03

20 30 4.1155E�02 4.1152E�02 3.8557E�07 1.4402E�03

50 45 6.1734E�02 6.1728E�02 2.5704E�07 9.6011E�04

100 80 1.0976E�01 1.0974E�01 1.4457E�07 5.4007E�04

The corresponding inertias are also shown. The system parameters are o ¼ 27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, x1

a ¼ 0:52L, x2
a ¼ 0:71L, x1

n ¼ 0:3L,

x2
n ¼ 0:6L, s1 ¼ 2:80106� 106EI=L3, s2 ¼ �4:57068� 106EI=L3, t1 ¼ 4:93548� 105EI=L and t2 ¼ �7:75327� 106EI=L. The attach-

ment and node locations are not collocated. The stiffnesses ki and kri of the springs are non-dimensionalized by dividing by EI=L3 and

EI=L, respectively. The inertias I i are non-dimensionalized by dividing by rL3.
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systems may often be sufficient to suppress the vibration to an acceptable level if the node and attachment
locations are strategically chosen.

In Tables 4 and 5 are given the mass and inertia amplitudes for the translational and rotational oscillators
of Fig. 10 for different sets of ki and kri values. For convenience, k1 ¼ k2 and kr1 ¼ kr2. For the si and ti of
Fig. 10, the mass and inertia parameters can be readily determined once the stiffnesses are specified, whose
bounds are given by Eqs. (26) and (27). For the system parameters of Fig. 10, because the si and ti are so
large, for the stiffness values shown in Tables 4 and 5, m1 � m2 and I1 � I2. Moreover, from Tables 4 and 5,
note that the vibration amplitude of each oscillator decreases with increasing stiffness. Interestingly, for
each translational and rotational oscillator, the products of mizi and I iyi remain unchanged, same as the
results found in Ref. [12] where only nodes are imposed. For the system parameters of Fig. 10,
m1z1 ¼ 5:0022E� 07FrL4=ðEIÞ, m2z2 ¼ 1:2980E� 03FrL4=ðEIÞ, I1y1 ¼ 1:5868E� 08FrL5=ðEIÞ and
I2y2 ¼ 5:9266E� 05FrL5=ðEIÞ. Like the collocated case, once the products mizi and I iyi have been
determined, the oscillator parameters can be selected to satisfy the maximum allowable amplitudes for the
masses and inertias.

In application, the attachment locations for the translational and rotational oscillators do not have to
coincide. It is easy to extend our results to impose fixed points by attaching multiple translational and
rotational oscillators at distinct locations along the beam. In this case, Eqs. (23) and (24) become

/T
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nÞ ½K
d � þ

XS

i¼1

½si/ðx
i
atÞ/
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ðxi

arÞ� � o2½Md �

( )�1
F/ðxf Þ ¼ 0, (30)

where xi
at and xi

ar designate the attachment locations of the ith translational and rotational oscillators,
respectively. Solving Eqs. (29) and (30) simultaneously for the si and ti, one can then choose the oscillator
parameters to impose fixed nodes at the desired locations. To illustrate this more general case, consider a case
where all the parameters are identical to those shown in Fig. 7, with the exception that the rotational oscillator

is moved from 0:65L to 0:4L (o ¼ 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, xat ¼ 0:65L, xar ¼ 0:4L, and xN ¼ 0:31L).

Eqs. (29) and (30) give s ¼ 1:93531� 103EI=L3 and t ¼ 9:86315� 103EI=L. To impose a node whereby only

one sprung mass is attached [11] at 0:65L, one finds s ¼ 1:89511� 103EI=L3. Fig. 11 shows the steady state
lateral displacement of the beam. Note that a fixed node at xn ¼ 0:31L is still induced, even though the
attachment locations for the translational and rotational oscillators are different. While the lateral
displacements of the beam in the region between 0:4L and 1:0L are higher than those shown in Fig. 7, the
vibration of the beam between 0 to 0:4L is still substantially quenched. Thus, one can impose fixed nodes by
attaching the translational and rotational oscillators at distinct locations.
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Fig. 12. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with two sprung masses as well as two

rotational oscillators (solid line), with two sprung masses only (dash–dotted line), and without any oscillator (dashed line). The system

parameters for solid line are o ¼ 27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, x1

at ¼ 0:35L, x2
at ¼ 0:55L, x1

ar ¼ 0:22L, x2
ar ¼ 0:65L, x1

n ¼ 0:31L, x2
n ¼ 0:6L,

s1 ¼ �4:18674� 106EI=L3, s2 ¼ 1:49858� 106EI=L3, t1 ¼ �6:10210� 101EI=L and t2 ¼ �2:81142� 101EI=L. For the dash–dotted

line, s1 ¼ 5:72604� 103EI=L3 and s2 ¼ �4:01197� 103EI=L3. The attachment and node locations are not collocated.
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Fig. 11. The steady state deformed shapes of a uniform simply supported Euler–Bernoulli beam with a sprung mass as well as a rotational

oscillator (solid line), with a sprung mass only (dash–dotted line), and without any oscillator (dashed line). The system parameters for the

solid line are o ¼ 57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, xf ¼ 0:77L, xat ¼ 0:65L, xar ¼ 0:4L, xn ¼ 0:31L, s ¼ 1:93531� 103EI=L3 and t ¼ 9:86315� 103EI=L.

For the dash–dotted line, s ¼ 1:89511� 103EI=L3. The attachment and node locations are not collocated.
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As the last example, consider now a case where two translational and two rotational oscillators are
employed to obtain two fixed points at x1

n ¼ 0:31L and x2
n ¼ 0:6L. The attachment locations for the

translational oscillators are x1
at ¼ 0:35L and x2

at ¼ 0:55L, and the attachment locations of the rotational

oscillators are x1
ar ¼ 0:22L and x2

ar ¼ 0:65L. A harmonic excitation with frequency 57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
is applied at

xf ¼ 0:77L. By solving Eqs. (29) and (30), one obtains s1 ¼ �4:18674� 104EI=L3, s2 ¼ 1:49858� 104EI=L3,

t1 ¼ �6:10210� 101EI=L and t2 ¼ �2:81142� 101EI=L. To impose two nodes with sprung masses attached
at x1

at and x2
at, one finds s1 ¼ 5:72604� 103EI=L3 and s2 ¼ �4:01197� 103EI=L3. In Fig. 12 is shown the

steady state lateral displacement of the beam. Note that the vibration of the entire beam is drastically
quenched after two fixed points are imposed.

By using the assumed modes method, a simple and efficient approach has been developed to solve the
inverse problem of imposing one or more fixed nodes, or points of zero displacements and zero slopes,
anywhere along an arbitrarily supported linear structure during harmonic excitations. This has practical
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benefits because it allows any point along the structure to remain stationary without using any rigid supports,
and it enables certain regions of the structure to undergo very small deflections, effectively quenching
vibration in those sections.

4. Conclusions

Elastically mounted masses and rotational oscillators can be used to impose a single or multiple fixed nodes
on any linear structure during harmonic excitations. When the parameters of the sprung masses and rotational
oscillators are properly chosen, fixed nodes can always be induced at the attachment locations for any
excitation frequency and excitation location. When the attachment and the fixed node locations are not
collocated, it is only possible to induce a fixed node or multiple fixed nodes at certain locations along the
structure. In addition, if the fixed node locations are properly selected, a region of nearly zero amplitudes can
be imposed along the elastic structure for a given localized harmonic force without using any rigid supports,
effectively quenching vibration in that segment of the structure. A detailed procedure to assist in the selection
of the attached sprung masses and rotational oscillators was outlined, and bounds for the stiffnesses were
given that serve as a design guide. Numerical experiments validated the utility of the proposed scheme of
imposing a single or multiple fixed nodes during harmonic excitations for the collocated and non-collocated
cases.
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